Skillnad mellan versioner av "4.3 Konjugatet"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 29: Rad 29:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
+++
 +
 +
<small>
 +
== <b><span style="color:#931136">Samband mellan ett polynoms koefficienter och dess nollställen</span></b> ==
 +
<big>
 +
Den franske matematikern [http://en.wikipedia.org/wiki/Fran%C3%A7ois_Vi%C3%A8te <b><span style="color:blue">François Viète</span></b>] var en av de första som på <math>1500</math>-talet såg sambandet mellan ett polynoms koefficienter och dess nollställen. Därför kallas formlerna efter honom.
 +
 +
==== <b><span style="color:#931136">Uppgift:</span></b> ====
 +
Ställ upp en 2:a gradsekvation vars lösningar är <math> \, x_1 = 2 \, </math> och <math> \, x_2 = 3 </math>.
 +
 +
==== <b><span style="color:#931136">Lösning:</span></b> ====
 +
För lösningarna <math> x_1\,</math> och <math> \, x_2\,</math> av 2:a gradsekvationen <math> \, x^2 + p\,x + q = 0 \, </math> gäller
 +
</big>
 +
 +
<table>
 +
<tr> <td><div class="ovnA">
 +
<b><span style="color:blue">Vietas formler:</span></b>
 +
<table>
 +
<tr>
 +
<td><math> \boxed{\begin{align} x_1  +  x_2 & = -p  \\
 +
                        x_1 \cdot x_2 & = q
 +
          \end{align}} </math></td>
 +
<td><math> \quad {\rm Dvs:} \quad </math></td>
 +
<td><math> \begin{align} 2  +  3 & = 5 = -p  \\
 +
                        2 \cdot 3 & = 6  = q
 +
          \end{align} </math></td>
 +
<td><math> \quad {\rm och:} \quad </math></td>
 +
<td><math> \begin{align} p & = -5  \\
 +
                        q & = 6
 +
          \end{align} </math></td>
 +
</tr>
 +
</table>
 +
 +
Därmed blir 2:a gradsekvationen<span style="color:black">:</span>
 +
 +
::<math> \; x^2 - 5\,x + 6 \, = \, 0 </math>
 +
</div></td>
 +
<td><math> \qquad </math></td>
 +
<td><big>Kontroll och jämförelse med p-q-formeln<span style="color:black">:</span>
 +
 +
:::<math>\begin{array}{rcl} x^2 - 5\,x + 6 & = & 0                          \\
 +
                                    x_{1,2} & = & 2,5 \pm \sqrt{6,25 - 6}  \\
 +
                                    x_{1,2} & = & 2,5 \pm \sqrt{0,25}        \\
 +
                                    x_{1,2} & = & 2,5 \pm 0,5                \\
 +
                                    x_1    & = & 3                          \\
 +
                                    x_2    & = & 2                         
 +
            \end{array}</math></big></td>
 +
</tr>
 +
</table>
 +
 +
<big>
 +
Uppgiften ovan ger oss ett praktiskt verktyg i handen att bestämma polynomets nollställen med hjälp av dess koefficienter.
 +
 +
Den är en tillämpning av följande generellt samband mellan 2:gradspolynomets koefficienter och dess nollställen:
 +
 +
== <small><b><span style="color:#931136">Vietas formler</span></b></small> ==
 +
 +
<div class="border-divblue">
 +
Om 2:gradsekvationen <math> \; x^2 + p\,x + q \; = \; 0 \; </math> har lösnin-
 +
 +
garna <math> x_1\, </math> och <math> x_2\, </math> så gäller<span style="color:black">:</span> <math> \qquad \boxed{\begin{align} x_1  +  x_2 & = -p  \\
 +
                        x_1 \cdot x_2 & = q
 +
          \end{align}} </math>
 +
</div>
 +
 +
 +
<big><b><span style="color:#931136">Bevis med p-q formeln</span></b></big>
 +
 +
2:a gradsekvationen <math> \, x^2 + p\,x + q = 0\,</math> har enligt [[Ekvationer#3) pq-formeln:|<b><span style="color:blue">pq-formeln</span></b>]] lösningarna <math> \quad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math>
 +
 +
Om vi adderar de båda lösningarna ovan får vi<span style="color:black">:</span>
 +
 +
<math> \displaystyle x_1 \, + \, x_2 \, = \, \left(-\frac{p}{2} \, + \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, + \, \left(-\frac{p}{2} \, - \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, = \, -\frac{p}{2} \, - \, \frac{p}{2} \, = \, - \, p</math>
 +
 +
 +
Detta för att de båda rotuttrycken tar ut varandra när vi löser upp parenteserna, vilket bevisar Vietas första formel.
 +
 +
Om vi nu multiplicerar pq-formelns båda lösningar med varandra får vi<span style="color:black">:</span>
 +
 +
<math> \displaystyle x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \color{Red} = \bigg(\frac{p}{2}\bigg)^2 - \left( \bigg(\frac{p}{2}\bigg)^2-q \right) = \bigg(\frac{p}{2}\bigg)^2 - \bigg(\frac{p}{2}\bigg)^2 + q \, = \, q </math>
 +
 +
 +
Omformningen kring <math> \color{Red} = </math> sker enligt [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">konjugatregeln</span></b>]] <math> (a+b) \cdot (a-b) = a^2 - b^2 </math> om vi sätter <math> \displaystyle a = -\frac{p}{2} </math> och <math> \displaystyle b = \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math>.
 +
 +
Detta bevisar Vietas andra formel.
 +
 +
 +
<big><b><span style="color:#931136">Bevis med faktorisering av polynom och jämförelse av koefficienter</span></b></big>
 +
 +
Lösningarna <math> \, x_1\, </math> och <math> \, x_2\, </math> till 2:a gradsekvationen <math> \, x^2 + p\,x + q \, = \, 0 \, </math> är nollställena till 2:gradspolynomet<span style="color:black">:</span>
 +
 +
:::::::::<math> x^2 + p\,x + q </math>
 +
 +
Å andra sidan: om ett 2:gradspolynom i faktorform <math> \, (x-x_1) \cdot (x-x_2)</math> har nollställena <math> x_1\, </math> och <math> x_2\, </math> så gäller<span style="color:black">:</span>
 +
 +
:::::::::<math> (x-x_1) \cdot (x-x_2) \; = \; 0 </math>
 +
 +
Därav följer<span style="color:black">:</span> <math> \qquad\qquad x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) </math>
 +
 +
Om vi nu utvecklar produkten på höger sidan kan vi skriva vidare<span style="color:black">:</span>
 +
 +
::<math> x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) = x^2\,-\,x_2\,x\,-\,x_1\,x\,+\,x_1 \cdot x_2 = x^2\,-\,(x_1+x_2)\,x\,+\,x_1 \cdot x_2 </math>
 +
 +
En jämförelse av koefficienterna mellan polynomet <math> x^2 - (x_1+x_2)\,x + x_1 \cdot x_2 </math> (högerled) och polynomet <math> x^2 + p\,x + q </math> (vänsterled) ger:
 +
 +
:::::::::<math> x_1 + x_2 = -p \qquad {\rm och} \qquad x_1 \cdot x_2 = q </math>
 +
 +
Om detta bevis förefaller vara mindre förståeligt än det första med pq-formeln, kan det bero på att du (beroende på kursupplägg) inte gått igenom [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">Polynom i faktorform</span></b>]] och/eller [[1.1_Fördjupning_till_Polynom#J.C3.A4mf.C3.B6relse_av_koefficienter|<b><span style="color:blue">Jämförelse av koefficienter</span></b>]].
 +
 +
 +
----
 +
Vietas formler kan generaliseras till polynom av högre grad än <math>2</math> och formuleras för polynom av grad <math>n</math>.
 +
----
 +
</big>
 +
 +
 +
== <b><span style="color:#931136">Lösning av 2:a gradsekvationer med Vieta (utan p-q-formeln)</span></b> ==
 +
 +
<big>
 +
Er stor fördel av Vietas formler för oss är att man kan lösa 2:a gradsekvationer och därmed faktorisera polynom utan att behöva använda p-q-formeln. Detta innebär mindre räknearbete vilket i sin tur minskar risken för felräkning. På köpet går det fortare att ta fram faktorisering av polynom. Läs även om [[Ekvationer#Nackdelen_med_Vieta|<b><span style="color:blue">nackdelen med Vietas formler</span></b>]].
 +
</big>
 +
 +
 +
<div class="exempel">
 +
== <b><span style="color:#931136">Exempel 1:</span></b> ==
 +
 +
<big>
 +
Lös ekvationen <math> \quad x^2 - 7\,x + 10 \; = \; 0 </math>
 +
</big>
 +
 +
==== <b><span style="color:#931136">Lösning:</span></b> ====
 +
 +
<big>
 +
För lösningarna <math> x_1\,</math> och <math> x_2\,</math> måste enligt Vietas formler gälla<span style="color:black">:</span>
 +
 +
:::<math> \begin{align} x_1  +  x_2 & = -(-7) = 7  \\
 +
                        x_1 \cdot x_2 & = 10
 +
        \end{align}</math>
 +
 +
Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7.
 +
 +
Med lite provande hittar man <math> \, 2 \, </math> och <math> \, 5 \, </math>  eftersom <math> \, 2 + 5 = 7\, </math> och <math> \, 2 \cdot 5 = 10 </math>.
 +
 +
Kontrollen bekräftar resultatet<span style="color:black">:</span>
 +
 +
:::<math> 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 </math>
 +
 +
:::<math> 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 </math>
 +
 +
Har vi på det här enkla sättet hittat nollställena till polynomet <math> x^2 - 7\,x + 10 </math> kan vi faktorisera det<span style="color:black">:</span>
 +
 +
:::<math> x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) </math>
 +
 +
Utveckling av produkten på höger sidan bekräftar faktoriseringen.
 +
</big></div>
 +
 +
 +
<div class="exempel">
 +
== <b><span style="color:#931136">Exempel 2</span></b> ==
 +
<big>
 +
Lös ekvationen <math> \quad x^2 - 8\,x + 16 \; = \; 0 </math>
 +
</big>
 +
 +
==== <b><span style="color:#931136">Lösning:</span></b> ====
 +
 +
<big>
 +
Vietas formler ger<span style="color:black">:</span>
 +
 +
:::<math> \begin{align} x_1  +  x_2 & = -(-8) = 8  \\
 +
                        x_1 \cdot x_2 & = 16
 +
        \end{align}</math>
 +
 +
Man hittar lösningarna <math> x_1 = 4\,</math> och <math> x_2 = 4\,</math> eftersom <math> 4 + 4 = 8\,</math> och <math> 4 \cdot 4 = 16 </math>.
 +
 +
Därför kan polynomet <math> x^2 - 8\,x + 16 </math> faktoriseras så här<span style="color:black">:</span>
 +
 +
:::<math> x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 </math>
 +
 +
Den dubbla förekomsten av faktorn <math> (x-4)\,</math> ger roten, dvs lösningen <math> x = 4\,</math>, dess namn [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">dubbelrot</span></b>]].
 +
</big></div>
 +
 +
</small>
 +
 +
+++
  
  

Versionen från 3 februari 2022 kl. 16.51

IND_VAL: v6 I, tis kl 11.15-12.20, sal 10. Övningar 4116-4125.

IND_VAL: v6 II, tor kl 14.40-15.50, sal 2. Övningar 4126-4134.


       <<  Förra avsnitt          Genomgång          Övningar          Facit          Nästa avsnitt  >>      


Konjugatets definition

4 2 Komplexa tal 1.jpg


Konjugatets egenskaper

4 2 Komplexa tal 2.jpg

+++

Samband mellan ett polynoms koefficienter och dess nollställen

Den franske matematikern François Viète var en av de första som på \(1500\)-talet såg sambandet mellan ett polynoms koefficienter och dess nollställen. Därför kallas formlerna efter honom.

Uppgift:

Ställ upp en 2:a gradsekvation vars lösningar är \( \, x_1 = 2 \, \) och \( \, x_2 = 3 \).

Lösning:

För lösningarna \( x_1\,\) och \( \, x_2\,\) av 2:a gradsekvationen \( \, x^2 + p\,x + q = 0 \, \) gäller

Vietas formler:

\( \boxed{\begin{align} x_1 + x_2 & = -p \\ x_1 \cdot x_2 & = q \end{align}} \) \( \quad {\rm Dvs:} \quad \) \( \begin{align} 2 + 3 & = 5 = -p \\ 2 \cdot 3 & = 6 = q \end{align} \) \( \quad {\rm och:} \quad \) \( \begin{align} p & = -5 \\ q & = 6 \end{align} \)

Därmed blir 2:a gradsekvationen:

\[ \; x^2 - 5\,x + 6 \, = \, 0 \]
\( \qquad \) Kontroll och jämförelse med p-q-formeln:
\[\begin{array}{rcl} x^2 - 5\,x + 6 & = & 0 \\ x_{1,2} & = & 2,5 \pm \sqrt{6,25 - 6} \\ x_{1,2} & = & 2,5 \pm \sqrt{0,25} \\ x_{1,2} & = & 2,5 \pm 0,5 \\ x_1 & = & 3 \\ x_2 & = & 2 \end{array}\]

Uppgiften ovan ger oss ett praktiskt verktyg i handen att bestämma polynomets nollställen med hjälp av dess koefficienter.

Den är en tillämpning av följande generellt samband mellan 2:gradspolynomets koefficienter och dess nollställen:

Vietas formler

Om 2:gradsekvationen \( \; x^2 + p\,x + q \; = \; 0 \; \) har lösnin-

garna \( x_1\, \) och \( x_2\, \) så gäller: \( \qquad \boxed{\begin{align} x_1 + x_2 & = -p \\ x_1 \cdot x_2 & = q \end{align}} \)


Bevis med p-q formeln

2:a gradsekvationen \( \, x^2 + p\,x + q = 0\,\) har enligt pq-formeln lösningarna \( \quad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\)

Om vi adderar de båda lösningarna ovan får vi:

\( \displaystyle x_1 \, + \, x_2 \, = \, \left(-\frac{p}{2} \, + \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, + \, \left(-\frac{p}{2} \, - \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, = \, -\frac{p}{2} \, - \, \frac{p}{2} \, = \, - \, p\)


Detta för att de båda rotuttrycken tar ut varandra när vi löser upp parenteserna, vilket bevisar Vietas första formel.

Om vi nu multiplicerar pq-formelns båda lösningar med varandra får vi:

\( \displaystyle x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \color{Red} = \bigg(\frac{p}{2}\bigg)^2 - \left( \bigg(\frac{p}{2}\bigg)^2-q \right) = \bigg(\frac{p}{2}\bigg)^2 - \bigg(\frac{p}{2}\bigg)^2 + q \, = \, q \)


Omformningen kring \( \color{Red} = \) sker enligt konjugatregeln \( (a+b) \cdot (a-b) = a^2 - b^2 \) om vi sätter \( \displaystyle a = -\frac{p}{2} \) och \( \displaystyle b = \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\).

Detta bevisar Vietas andra formel.


Bevis med faktorisering av polynom och jämförelse av koefficienter

Lösningarna \( \, x_1\, \) och \( \, x_2\, \) till 2:a gradsekvationen \( \, x^2 + p\,x + q \, = \, 0 \, \) är nollställena till 2:gradspolynomet:

\[ x^2 + p\,x + q \]

Å andra sidan: om ett 2:gradspolynom i faktorform \( \, (x-x_1) \cdot (x-x_2)\) har nollställena \( x_1\, \) och \( x_2\, \) så gäller:

\[ (x-x_1) \cdot (x-x_2) \; = \; 0 \]

Därav följer: \( \qquad\qquad x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) \)

Om vi nu utvecklar produkten på höger sidan kan vi skriva vidare:

\[ x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) = x^2\,-\,x_2\,x\,-\,x_1\,x\,+\,x_1 \cdot x_2 = x^2\,-\,(x_1+x_2)\,x\,+\,x_1 \cdot x_2 \]

En jämförelse av koefficienterna mellan polynomet \( x^2 - (x_1+x_2)\,x + x_1 \cdot x_2 \) (högerled) och polynomet \( x^2 + p\,x + q \) (vänsterled) ger:

\[ x_1 + x_2 = -p \qquad {\rm och} \qquad x_1 \cdot x_2 = q \]

Om detta bevis förefaller vara mindre förståeligt än det första med pq-formeln, kan det bero på att du (beroende på kursupplägg) inte gått igenom Polynom i faktorform och/eller Jämförelse av koefficienter.



Vietas formler kan generaliseras till polynom av högre grad än \(2\) och formuleras för polynom av grad \(n\).



Lösning av 2:a gradsekvationer med Vieta (utan p-q-formeln)

Er stor fördel av Vietas formler för oss är att man kan lösa 2:a gradsekvationer och därmed faktorisera polynom utan att behöva använda p-q-formeln. Detta innebär mindre räknearbete vilket i sin tur minskar risken för felräkning. På köpet går det fortare att ta fram faktorisering av polynom. Läs även om nackdelen med Vietas formler.


Exempel 1:

Lös ekvationen \( \quad x^2 - 7\,x + 10 \; = \; 0 \)

Lösning:

För lösningarna \( x_1\,\) och \( x_2\,\) måste enligt Vietas formler gälla:

\[ \begin{align} x_1 + x_2 & = -(-7) = 7 \\ x_1 \cdot x_2 & = 10 \end{align}\]

Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7.

Med lite provande hittar man \( \, 2 \, \) och \( \, 5 \, \) eftersom \( \, 2 + 5 = 7\, \) och \( \, 2 \cdot 5 = 10 \).

Kontrollen bekräftar resultatet:

\[ 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 \]
\[ 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 \]

Har vi på det här enkla sättet hittat nollställena till polynomet \( x^2 - 7\,x + 10 \) kan vi faktorisera det:

\[ x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) \]

Utveckling av produkten på höger sidan bekräftar faktoriseringen.


Exempel 2

Lös ekvationen \( \quad x^2 - 8\,x + 16 \; = \; 0 \)

Lösning:

Vietas formler ger:

\[ \begin{align} x_1 + x_2 & = -(-8) = 8 \\ x_1 \cdot x_2 & = 16 \end{align}\]

Man hittar lösningarna \( x_1 = 4\,\) och \( x_2 = 4\,\) eftersom \( 4 + 4 = 8\,\) och \( 4 \cdot 4 = 16 \).

Därför kan polynomet \( x^2 - 8\,x + 16 \) faktoriseras så här:

\[ x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 \]

Den dubbla förekomsten av faktorn \( (x-4)\,\) ger roten, dvs lösningen \( x = 4\,\), dess namn dubbelrot.

+++


4.4   Att räkna med komplexa tal

4 2 Komplexa tal 3.jpg


4 2 Komplexa tal 4.jpg







Copyright © 2022 TechPages AB. All Rights Reserved.