Skillnad mellan versioner av "4.3 Konjugatet"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 29: | Rad 29: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | +++ | ||
+ | |||
+ | <small> | ||
+ | == <b><span style="color:#931136">Samband mellan ett polynoms koefficienter och dess nollställen</span></b> == | ||
+ | <big> | ||
+ | Den franske matematikern [http://en.wikipedia.org/wiki/Fran%C3%A7ois_Vi%C3%A8te <b><span style="color:blue">François Viète</span></b>] var en av de första som på <math>1500</math>-talet såg sambandet mellan ett polynoms koefficienter och dess nollställen. Därför kallas formlerna efter honom. | ||
+ | |||
+ | ==== <b><span style="color:#931136">Uppgift:</span></b> ==== | ||
+ | Ställ upp en 2:a gradsekvation vars lösningar är <math> \, x_1 = 2 \, </math> och <math> \, x_2 = 3 </math>. | ||
+ | |||
+ | ==== <b><span style="color:#931136">Lösning:</span></b> ==== | ||
+ | För lösningarna <math> x_1\,</math> och <math> \, x_2\,</math> av 2:a gradsekvationen <math> \, x^2 + p\,x + q = 0 \, </math> gäller | ||
+ | </big> | ||
+ | |||
+ | <table> | ||
+ | <tr> <td><div class="ovnA"> | ||
+ | <b><span style="color:blue">Vietas formler:</span></b> | ||
+ | <table> | ||
+ | <tr> | ||
+ | <td><math> \boxed{\begin{align} x_1 + x_2 & = -p \\ | ||
+ | x_1 \cdot x_2 & = q | ||
+ | \end{align}} </math></td> | ||
+ | <td><math> \quad {\rm Dvs:} \quad </math></td> | ||
+ | <td><math> \begin{align} 2 + 3 & = 5 = -p \\ | ||
+ | 2 \cdot 3 & = 6 = q | ||
+ | \end{align} </math></td> | ||
+ | <td><math> \quad {\rm och:} \quad </math></td> | ||
+ | <td><math> \begin{align} p & = -5 \\ | ||
+ | q & = 6 | ||
+ | \end{align} </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | Därmed blir 2:a gradsekvationen<span style="color:black">:</span> | ||
+ | |||
+ | ::<math> \; x^2 - 5\,x + 6 \, = \, 0 </math> | ||
+ | </div></td> | ||
+ | <td><math> \qquad </math></td> | ||
+ | <td><big>Kontroll och jämförelse med p-q-formeln<span style="color:black">:</span> | ||
+ | |||
+ | :::<math>\begin{array}{rcl} x^2 - 5\,x + 6 & = & 0 \\ | ||
+ | x_{1,2} & = & 2,5 \pm \sqrt{6,25 - 6} \\ | ||
+ | x_{1,2} & = & 2,5 \pm \sqrt{0,25} \\ | ||
+ | x_{1,2} & = & 2,5 \pm 0,5 \\ | ||
+ | x_1 & = & 3 \\ | ||
+ | x_2 & = & 2 | ||
+ | \end{array}</math></big></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | <big> | ||
+ | Uppgiften ovan ger oss ett praktiskt verktyg i handen att bestämma polynomets nollställen med hjälp av dess koefficienter. | ||
+ | |||
+ | Den är en tillämpning av följande generellt samband mellan 2:gradspolynomets koefficienter och dess nollställen: | ||
+ | |||
+ | == <small><b><span style="color:#931136">Vietas formler</span></b></small> == | ||
+ | |||
+ | <div class="border-divblue"> | ||
+ | Om 2:gradsekvationen <math> \; x^2 + p\,x + q \; = \; 0 \; </math> har lösnin- | ||
+ | |||
+ | garna <math> x_1\, </math> och <math> x_2\, </math> så gäller<span style="color:black">:</span> <math> \qquad \boxed{\begin{align} x_1 + x_2 & = -p \\ | ||
+ | x_1 \cdot x_2 & = q | ||
+ | \end{align}} </math> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <big><b><span style="color:#931136">Bevis med p-q formeln</span></b></big> | ||
+ | |||
+ | 2:a gradsekvationen <math> \, x^2 + p\,x + q = 0\,</math> har enligt [[Ekvationer#3) pq-formeln:|<b><span style="color:blue">pq-formeln</span></b>]] lösningarna <math> \quad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math> | ||
+ | |||
+ | Om vi adderar de båda lösningarna ovan får vi<span style="color:black">:</span> | ||
+ | |||
+ | <math> \displaystyle x_1 \, + \, x_2 \, = \, \left(-\frac{p}{2} \, + \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, + \, \left(-\frac{p}{2} \, - \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, = \, -\frac{p}{2} \, - \, \frac{p}{2} \, = \, - \, p</math> | ||
+ | |||
+ | |||
+ | Detta för att de båda rotuttrycken tar ut varandra när vi löser upp parenteserna, vilket bevisar Vietas första formel. | ||
+ | |||
+ | Om vi nu multiplicerar pq-formelns båda lösningar med varandra får vi<span style="color:black">:</span> | ||
+ | |||
+ | <math> \displaystyle x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \color{Red} = \bigg(\frac{p}{2}\bigg)^2 - \left( \bigg(\frac{p}{2}\bigg)^2-q \right) = \bigg(\frac{p}{2}\bigg)^2 - \bigg(\frac{p}{2}\bigg)^2 + q \, = \, q </math> | ||
+ | |||
+ | |||
+ | Omformningen kring <math> \color{Red} = </math> sker enligt [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">konjugatregeln</span></b>]] <math> (a+b) \cdot (a-b) = a^2 - b^2 </math> om vi sätter <math> \displaystyle a = -\frac{p}{2} </math> och <math> \displaystyle b = \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math>. | ||
+ | |||
+ | Detta bevisar Vietas andra formel. | ||
+ | |||
+ | |||
+ | <big><b><span style="color:#931136">Bevis med faktorisering av polynom och jämförelse av koefficienter</span></b></big> | ||
+ | |||
+ | Lösningarna <math> \, x_1\, </math> och <math> \, x_2\, </math> till 2:a gradsekvationen <math> \, x^2 + p\,x + q \, = \, 0 \, </math> är nollställena till 2:gradspolynomet<span style="color:black">:</span> | ||
+ | |||
+ | :::::::::<math> x^2 + p\,x + q </math> | ||
+ | |||
+ | Å andra sidan: om ett 2:gradspolynom i faktorform <math> \, (x-x_1) \cdot (x-x_2)</math> har nollställena <math> x_1\, </math> och <math> x_2\, </math> så gäller<span style="color:black">:</span> | ||
+ | |||
+ | :::::::::<math> (x-x_1) \cdot (x-x_2) \; = \; 0 </math> | ||
+ | |||
+ | Därav följer<span style="color:black">:</span> <math> \qquad\qquad x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) </math> | ||
+ | |||
+ | Om vi nu utvecklar produkten på höger sidan kan vi skriva vidare<span style="color:black">:</span> | ||
+ | |||
+ | ::<math> x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) = x^2\,-\,x_2\,x\,-\,x_1\,x\,+\,x_1 \cdot x_2 = x^2\,-\,(x_1+x_2)\,x\,+\,x_1 \cdot x_2 </math> | ||
+ | |||
+ | En jämförelse av koefficienterna mellan polynomet <math> x^2 - (x_1+x_2)\,x + x_1 \cdot x_2 </math> (högerled) och polynomet <math> x^2 + p\,x + q </math> (vänsterled) ger: | ||
+ | |||
+ | :::::::::<math> x_1 + x_2 = -p \qquad {\rm och} \qquad x_1 \cdot x_2 = q </math> | ||
+ | |||
+ | Om detta bevis förefaller vara mindre förståeligt än det första med pq-formeln, kan det bero på att du (beroende på kursupplägg) inte gått igenom [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">Polynom i faktorform</span></b>]] och/eller [[1.1_Fördjupning_till_Polynom#J.C3.A4mf.C3.B6relse_av_koefficienter|<b><span style="color:blue">Jämförelse av koefficienter</span></b>]]. | ||
+ | |||
+ | |||
+ | ---- | ||
+ | Vietas formler kan generaliseras till polynom av högre grad än <math>2</math> och formuleras för polynom av grad <math>n</math>. | ||
+ | ---- | ||
+ | </big> | ||
+ | |||
+ | |||
+ | == <b><span style="color:#931136">Lösning av 2:a gradsekvationer med Vieta (utan p-q-formeln)</span></b> == | ||
+ | |||
+ | <big> | ||
+ | Er stor fördel av Vietas formler för oss är att man kan lösa 2:a gradsekvationer och därmed faktorisera polynom utan att behöva använda p-q-formeln. Detta innebär mindre räknearbete vilket i sin tur minskar risken för felräkning. På köpet går det fortare att ta fram faktorisering av polynom. Läs även om [[Ekvationer#Nackdelen_med_Vieta|<b><span style="color:blue">nackdelen med Vietas formler</span></b>]]. | ||
+ | </big> | ||
+ | |||
+ | |||
+ | <div class="exempel"> | ||
+ | == <b><span style="color:#931136">Exempel 1:</span></b> == | ||
+ | |||
+ | <big> | ||
+ | Lös ekvationen <math> \quad x^2 - 7\,x + 10 \; = \; 0 </math> | ||
+ | </big> | ||
+ | |||
+ | ==== <b><span style="color:#931136">Lösning:</span></b> ==== | ||
+ | |||
+ | <big> | ||
+ | För lösningarna <math> x_1\,</math> och <math> x_2\,</math> måste enligt Vietas formler gälla<span style="color:black">:</span> | ||
+ | |||
+ | :::<math> \begin{align} x_1 + x_2 & = -(-7) = 7 \\ | ||
+ | x_1 \cdot x_2 & = 10 | ||
+ | \end{align}</math> | ||
+ | |||
+ | Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7. | ||
+ | |||
+ | Med lite provande hittar man <math> \, 2 \, </math> och <math> \, 5 \, </math> eftersom <math> \, 2 + 5 = 7\, </math> och <math> \, 2 \cdot 5 = 10 </math>. | ||
+ | |||
+ | Kontrollen bekräftar resultatet<span style="color:black">:</span> | ||
+ | |||
+ | :::<math> 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 </math> | ||
+ | |||
+ | :::<math> 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 </math> | ||
+ | |||
+ | Har vi på det här enkla sättet hittat nollställena till polynomet <math> x^2 - 7\,x + 10 </math> kan vi faktorisera det<span style="color:black">:</span> | ||
+ | |||
+ | :::<math> x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) </math> | ||
+ | |||
+ | Utveckling av produkten på höger sidan bekräftar faktoriseringen. | ||
+ | </big></div> | ||
+ | |||
+ | |||
+ | <div class="exempel"> | ||
+ | == <b><span style="color:#931136">Exempel 2</span></b> == | ||
+ | <big> | ||
+ | Lös ekvationen <math> \quad x^2 - 8\,x + 16 \; = \; 0 </math> | ||
+ | </big> | ||
+ | |||
+ | ==== <b><span style="color:#931136">Lösning:</span></b> ==== | ||
+ | |||
+ | <big> | ||
+ | Vietas formler ger<span style="color:black">:</span> | ||
+ | |||
+ | :::<math> \begin{align} x_1 + x_2 & = -(-8) = 8 \\ | ||
+ | x_1 \cdot x_2 & = 16 | ||
+ | \end{align}</math> | ||
+ | |||
+ | Man hittar lösningarna <math> x_1 = 4\,</math> och <math> x_2 = 4\,</math> eftersom <math> 4 + 4 = 8\,</math> och <math> 4 \cdot 4 = 16 </math>. | ||
+ | |||
+ | Därför kan polynomet <math> x^2 - 8\,x + 16 </math> faktoriseras så här<span style="color:black">:</span> | ||
+ | |||
+ | :::<math> x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 </math> | ||
+ | |||
+ | Den dubbla förekomsten av faktorn <math> (x-4)\,</math> ger roten, dvs lösningen <math> x = 4\,</math>, dess namn [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">dubbelrot</span></b>]]. | ||
+ | </big></div> | ||
+ | |||
+ | </small> | ||
+ | |||
+ | +++ | ||
Versionen från 3 februari 2022 kl. 16.51
IND_VAL: v6 I, tis kl 11.15-12.20, sal 10. Övningar 4116-4125.
IND_VAL: v6 II, tor kl 14.40-15.50, sal 2. Övningar 4126-4134.
<< Förra avsnitt | Genomgång | Övningar | Facit | Nästa avsnitt >> |
Konjugatets definition
Konjugatets egenskaper
+++
Samband mellan ett polynoms koefficienter och dess nollställen
Den franske matematikern François Viète var en av de första som på \(1500\)-talet såg sambandet mellan ett polynoms koefficienter och dess nollställen. Därför kallas formlerna efter honom.
Uppgift:
Ställ upp en 2:a gradsekvation vars lösningar är \( \, x_1 = 2 \, \) och \( \, x_2 = 3 \).
Lösning:
För lösningarna \( x_1\,\) och \( \, x_2\,\) av 2:a gradsekvationen \( \, x^2 + p\,x + q = 0 \, \) gäller
Vietas formler:
Därmed blir 2:a gradsekvationen:
|
\( \qquad \) | Kontroll och jämförelse med p-q-formeln:
|
Uppgiften ovan ger oss ett praktiskt verktyg i handen att bestämma polynomets nollställen med hjälp av dess koefficienter.
Den är en tillämpning av följande generellt samband mellan 2:gradspolynomets koefficienter och dess nollställen:
Vietas formler
Om 2:gradsekvationen \( \; x^2 + p\,x + q \; = \; 0 \; \) har lösnin-
garna \( x_1\, \) och \( x_2\, \) så gäller: \( \qquad \boxed{\begin{align} x_1 + x_2 & = -p \\ x_1 \cdot x_2 & = q \end{align}} \)
Bevis med p-q formeln
2:a gradsekvationen \( \, x^2 + p\,x + q = 0\,\) har enligt pq-formeln lösningarna \( \quad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\)
Om vi adderar de båda lösningarna ovan får vi:
\( \displaystyle x_1 \, + \, x_2 \, = \, \left(-\frac{p}{2} \, + \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, + \, \left(-\frac{p}{2} \, - \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, = \, -\frac{p}{2} \, - \, \frac{p}{2} \, = \, - \, p\)
Detta för att de båda rotuttrycken tar ut varandra när vi löser upp parenteserna, vilket bevisar Vietas första formel.
Om vi nu multiplicerar pq-formelns båda lösningar med varandra får vi:
\( \displaystyle x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \color{Red} = \bigg(\frac{p}{2}\bigg)^2 - \left( \bigg(\frac{p}{2}\bigg)^2-q \right) = \bigg(\frac{p}{2}\bigg)^2 - \bigg(\frac{p}{2}\bigg)^2 + q \, = \, q \)
Omformningen kring \( \color{Red} = \) sker enligt konjugatregeln \( (a+b) \cdot (a-b) = a^2 - b^2 \) om vi sätter \( \displaystyle a = -\frac{p}{2} \) och \( \displaystyle b = \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\).
Detta bevisar Vietas andra formel.
Bevis med faktorisering av polynom och jämförelse av koefficienter
Lösningarna \( \, x_1\, \) och \( \, x_2\, \) till 2:a gradsekvationen \( \, x^2 + p\,x + q \, = \, 0 \, \) är nollställena till 2:gradspolynomet:
- \[ x^2 + p\,x + q \]
Å andra sidan: om ett 2:gradspolynom i faktorform \( \, (x-x_1) \cdot (x-x_2)\) har nollställena \( x_1\, \) och \( x_2\, \) så gäller:
- \[ (x-x_1) \cdot (x-x_2) \; = \; 0 \]
Därav följer: \( \qquad\qquad x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) \)
Om vi nu utvecklar produkten på höger sidan kan vi skriva vidare:
- \[ x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) = x^2\,-\,x_2\,x\,-\,x_1\,x\,+\,x_1 \cdot x_2 = x^2\,-\,(x_1+x_2)\,x\,+\,x_1 \cdot x_2 \]
En jämförelse av koefficienterna mellan polynomet \( x^2 - (x_1+x_2)\,x + x_1 \cdot x_2 \) (högerled) och polynomet \( x^2 + p\,x + q \) (vänsterled) ger:
- \[ x_1 + x_2 = -p \qquad {\rm och} \qquad x_1 \cdot x_2 = q \]
Om detta bevis förefaller vara mindre förståeligt än det första med pq-formeln, kan det bero på att du (beroende på kursupplägg) inte gått igenom Polynom i faktorform och/eller Jämförelse av koefficienter.
Vietas formler kan generaliseras till polynom av högre grad än \(2\) och formuleras för polynom av grad \(n\).
Lösning av 2:a gradsekvationer med Vieta (utan p-q-formeln)
Er stor fördel av Vietas formler för oss är att man kan lösa 2:a gradsekvationer och därmed faktorisera polynom utan att behöva använda p-q-formeln. Detta innebär mindre räknearbete vilket i sin tur minskar risken för felräkning. På köpet går det fortare att ta fram faktorisering av polynom. Läs även om nackdelen med Vietas formler.
Exempel 1:
Lös ekvationen \( \quad x^2 - 7\,x + 10 \; = \; 0 \)
Lösning:
För lösningarna \( x_1\,\) och \( x_2\,\) måste enligt Vietas formler gälla:
- \[ \begin{align} x_1 + x_2 & = -(-7) = 7 \\ x_1 \cdot x_2 & = 10 \end{align}\]
Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7.
Med lite provande hittar man \( \, 2 \, \) och \( \, 5 \, \) eftersom \( \, 2 + 5 = 7\, \) och \( \, 2 \cdot 5 = 10 \).
Kontrollen bekräftar resultatet:
- \[ 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 \]
- \[ 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 \]
Har vi på det här enkla sättet hittat nollställena till polynomet \( x^2 - 7\,x + 10 \) kan vi faktorisera det:
- \[ x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) \]
Utveckling av produkten på höger sidan bekräftar faktoriseringen.
Exempel 2
Lös ekvationen \( \quad x^2 - 8\,x + 16 \; = \; 0 \)
Lösning:
Vietas formler ger:
- \[ \begin{align} x_1 + x_2 & = -(-8) = 8 \\ x_1 \cdot x_2 & = 16 \end{align}\]
Man hittar lösningarna \( x_1 = 4\,\) och \( x_2 = 4\,\) eftersom \( 4 + 4 = 8\,\) och \( 4 \cdot 4 = 16 \).
Därför kan polynomet \( x^2 - 8\,x + 16 \) faktoriseras så här:
- \[ x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 \]
Den dubbla förekomsten av faktorn \( (x-4)\,\) ger roten, dvs lösningen \( x = 4\,\), dess namn dubbelrot.
+++
4.4 Att räkna med komplexa tal
Copyright © 2022 TechPages AB. All Rights Reserved.