4.1 Olika typer av tal
<< Förra avsnitt | Genomgång | Övningar | Facit | Nästa avsnitt >> |
Repetition: Olika typer av tal
Rationella tal är tal i bråkform och kan alltid skrivas i decimalform. Dock finns decimaltal som inte kan skrivas i bråkform.
Exempel: Drar man roten ur \( \, 2 \, \) kommer man till: \( \qquad\qquad \sqrt{2} = 1,4142135623730950488016887\ldots \)
\( \sqrt{2} \, \) kan inte anges i bråkform \(-\) är inget rationellt tal \(-\) därför att det har oändligt många decimaler utan något upprepande mönster (utan period).
Sådana tal kallas för irrationella tal och är decimaltal med en oändlig icke-periodisk decimalutveckling. \( \sqrt{2} \, \), \( \sqrt{3} \, \) och talet \( \, \pi \, \) är exempel på irrationella tal.
Matematiskt exakt talat, är \( \, \sqrt{2} \, \) gränsvärdet (limes) av en följd av rationella tal som i varje steg närmar sig \( \, \sqrt{2} \). Gränsvärdet själv är inte längre rationellt. Därför inför man en ny talmängd, de irrationella talen.
Följande ny taltyp uppstår:
Men det finns ytterligare en talmängd som är ännu mer omfattande än de reella talen.
Löser man t.ex. ekvationen \( x^2 + 1 = 0 \) får man \( \; x = \sqrt{-1} \) som inte är något reellt tal därför att det inte finns något reellt tal som multiplicerat med sig själv ger \( \, -1 \). Vi säger: ekvationen saknar reell lösning.
För att lösa detta dilemma införs en ny symbol \( \; {\color{Red} i} \, = \, \sqrt{-1} \; \) med egenskapen \( \; {\color{Red} i}\,^2 \, = \, -1 \; \) med vars hjälp den nya talmängden definieras:
Alla talmängder bygger sin konstruktion på och är resultat av abstraktioner, i princip av samma typ som inledningsvis introducerades med talbegreppet \(-\) fast på högre nivå. Symbolen \( \, {\color{Red} i} \, \) är ett exempel på en sådan abstraktion.
Komplexa tal
Det komplexa talplanet
<< Förra avsnitt | Genomgång | Övningar | Facit | Nästa avsnitt >> |
4.2 Algebrans fundamentalsats
Ett polynom av grad \( n\, \) har exakt \( n\, \) komplexa nollställen \( \; x_1, \, x_2, \,\ldots\, , x_n \), även kallade polynomets rötter.
Polynomet kan fullständigt faktoriseras till exakt \( n\, \) linearfakrorer:
\( a_n x^n + a_{n-1} x^{n-1} + \; \ldots \; + a_1 x + a_0 \; = \; {\color{Red} {a_n \cdot\, (x-x_1) \cdot (x-x_2) \cdot\;\ldots\; \cdot (x-x_n)}} \)
om man räknar rötterna med multiplicitet (dubbla rötter dubbelt osv.), och tar även med de komplexa rötterna.
Utan komplexa tal hade denna faktorisering inte varit möjlig.
Läs mer om Algebrans fundamentalsats samt bevis, historia & annat gott.
Repetera även Faktorisering av polynom från Matte 3c-kursen.
Exempel 1
Faktorisera följande polynom fullständigt:\( \qquad\qquad P(x) = x^4 - 29\;x^2 + 100 \)
I övning 6 hade vi löst 4:e gradsekvationen \( \qquad\qquad\quad\;\; x^4 - 29\,x^2 + 100 \, = \, 0 \)
och fått lösningarna \( \qquad\qquad\qquad\qquad x_1 = 5, \qquad x_2 = -5, \qquad x_3 = 2 \quad {\rm och} \quad x_4 = -2 \)
Pga kännedomen om ekvationens lösningar som är identiska med polynomets nollställen (= rötter), kan vi enligt algebrans fundamentalsats faktorisera 4:e gradspolynomet \( P(x)\, \) så här:
\( \qquad\qquad\qquad\qquad P(x) = x^4 - 29\;x^2 + 100 = (x-5) \cdot (x+5) \cdot (x-2) \cdot (x+2) \)
Exempel 2
Faktorisera polynomet \( P(x)\, \) fullständigt när följande delfaktorisering redan existerar:
- \[ P(x) = x^5 - 5\,x^4 + 17\,x^3 - 13\,x^2 = x\cdot x\cdot (x-1)\cdot (x^2 - 4\,x + 13) \]
Delfaktoriseringen visar en dubbelrot \( x = 0\, \) och en enkel rot \( x = 1\, \). Man kan få fram den med de metoder vi lärt oss i detta avsnitt: Den dubbla roten \( x = 0\, \) får man genom att bryta ut \( x^2 \). Den enkla roten \( x = 1\, \) kan man få via grafen samt en prövning. Den sista faktorn kan beräknas med hjälp av jämförelse av koefficienter. Denna delfaktorisering stannar inom ramen av de reella talen.
Enligt algebrans fundamentalsats måste 5:e gradspolynomet \( P(x)\, \) ha två rötter till som ger upphov till den kvadratiska faktorn \( x^2 - 4\,x + 13 \) som står sist.
Vill man gå vidare och få fram den fullständiga faktoriseringen i linjära faktorer måste även den kvadratiska faktorn faktoriseras. Detta innebär att vi måste beräkna dess rötter som visar sig vara komplexa:
- \[\begin{array}{rcl} x^2 - 4\,x + 13 & = & 0 \\ x_{1,2} & = & 2 \pm \sqrt{4 - 13} \\ x_{1,2} & = & 2 \pm \sqrt{-9} \\ x_{1,2} & = & 2 \pm \sqrt{9 \cdot (-1)} \\ x_{1,2} & = & 2 \pm \sqrt{9}\cdot \sqrt{-1} \\ x_1 & = & 2 + 3\,i \\ x_2 & = & 2 - 3\,i \\ \end{array}\]
Vi får alltså följande faktorisering av den kvadratiska faktorn:
- \[ x^2 - 4\,x + 13 = (x - (2+3\,i)) \cdot (x - (2-3\,i)) = (x - 2-3\,i) \cdot (x - 2+3\,i)\]
Därmed blir den fullständiga faktoriseringen av polynomet \( P(x)\, \) i linjära faktorer\[ P(x) = x^5 - 5\,x^4 + 17\,x^3 - 13\,x^2 = x\cdot x\cdot (x-1)\cdot (x - 2-3\,i) \cdot (x - 2+3\,i) \]
Dvs \( P(x)\, \) har förutom dubbelroten \( x = 0\, \) och den enkla roten \( x = 1\, \) även de två komplexa rötterna \( x = 2 + 3\,i \) och \( x = 2 - 3\,i \). Sammanlagt har 5:e gradspolynomet \( P(x)\, \) exakt 5 rötter, om man räknar rötterna med multiplicitet, dvs den dubbla rötter dubbelt och beräknar även de komplexa rötterna - i enlighet med algebrans fundamentalsats.
Övningar 4111-4113 & Historik 1-3.
Copyright © 2022 TechPages AB. All Rights Reserved.