4.1 Olika typer av tal

Från Mathonline
Hoppa till: navigering, sök
        <<  Förra avsnitt          Genomgång          Övningar          Facit          Nästa avsnitt  >>      


Repetition:   Olika typer av tal

Vi brukar räkna antalet saker och ting i vår omgivning med den enklaste typen av tal,

de positiva heltalen:\(\qquad\qquad\qquad\qquad\)Positiva tal 16.gif

Så räknar vi antal objekt i en mängd, t.ex. fingrarna i våra händer. Alla dessa tal är \( \, > 0 \),

medan själva \( \, 0 \, \) får man först genom att dra av två lika stora positiva tal från varandra,

t.ex. \( \, 4 - 4 = 0 \, \). Detta leder till en ny talmängd med de positiva heltalen och \( 0 \), kallad:

Naturliga tal:       Naturliga tal 16.gif

Drar man av ett större naturligt tal från ett mindre kommer man till negativa tal, t.ex.

\( \, 4 - 5 = -1 \). Så uppstår ytterligare en ny talmängd:

Heltal:       Heltal 16.gif

Division av två heltal med varandra, t.ex. \( \, 1 / 3 = \displaystyle{1 \over 3} \, \) leder till tal i bråkform, även kallade:

     Lökmodell:

De olika taltyperna är delmängder av varandra.


Taltypera 3red.jpg
Rationella tal:       Rationella tal 60.jpg

Rationella tal är tal i bråkform och kan alltid skrivas i decimalform. Dock finns decimaltal som inte kan skrivas i bråkform.

Exempel:   Drar man roten ur \( \, 2 \, \) kommer man till: \( \qquad\qquad \sqrt{2} = 1,4142135623730950488016887\ldots \)

\( \sqrt{2} \, \) kan inte anges i bråkform \(-\) är inget rationellt tal \(-\) därför att det har oändligt många decimaler utan något upprepande mönster (utan period).

Sådana tal kallas för irrationella tal och är decimaltal med en oändlig icke-periodisk decimalutveckling. \( \sqrt{2} \, \), \( \sqrt{3} \, \) och talet \( \, \pi \, \) är exempel på irrationella tal.

Matematiskt exakt talat, är \( \, \sqrt{2} \, \) gränsvärdet (limes) av en följd av rationella tal som i varje steg närmar sig \( \, \sqrt{2} \). Gränsvärdet själv är inte längre rationellt. Därför inför man en ny talmängd, de irrationella talen.

Följande ny taltyp uppstår:

Reella tal:              De rationella talen tillsammans med alla irrationella.

Men det finns ytterligare en talmängd som är ännu mer omfattande än de reella talen.

Löser man t.ex. ekvationen \( x^2 + 1 = 0 \) får man \( \; x = \sqrt{-1} \) som inte är något reellt tal därför att det inte finns något reellt tal som multiplicerat med sig själv ger \( \, -1 \). Vi säger: ekvationen saknar reell lösning.

För att lösa detta dilemma införs en ny symbol \( \; {\color{Red} i} \, = \, \sqrt{-1} \; \) med egenskapen \( \; {\color{Red} i}\,^2 \, = \, -1 \; \) med vars hjälp den nya talmängden definieras:

Komplexa tal:       Alla tal av formen \( \quad a \, + \, b \cdot {\color{Red} i} \quad \) med \( \quad a, b \; = \; \) reella tal.

Alla talmängder bygger sin konstruktion på och är resultat av abstraktioner, i princip av samma typ som inledningsvis introducerades med talbegreppet \(-\) fast på högre nivå. Symbolen \( \, {\color{Red} i} \, \) är ett exempel på en sådan abstraktion.


Komplexa tal

Komplexa tal 1.jpg


Det komplexa talplanet

Komplexa tal 2.jpg




       <<  Förra avsnitt          Genomgång          Övningar          Facit          Nästa avsnitt  >>      


4.2   Algebrans fundamentalsats

Ett polynom av grad \( n\, \) har exakt \( n\, \) komplexa nollställen \( \; x_1, \, x_2, \,\ldots\, , x_n \), även kallade polynomets rötter.

Polynomet kan fullständigt faktoriseras till exakt \( n\, \) linearfakrorer:

\( a_n x^n + a_{n-1} x^{n-1} + \; \ldots \; + a_1 x + a_0 \; = \; {\color{Red} {a_n \cdot\, (x-x_1) \cdot (x-x_2) \cdot\;\ldots\; \cdot (x-x_n)}} \)

om man räknar rötterna med multiplicitet (dubbla rötter dubbelt osv.), och tar även med de komplexa rötterna.


Utan komplexa tal hade denna faktorisering inte varit möjlig.

Läs mer om Algebrans fundamentalsats samt bevis, historia & annat gott.

Repetera även Faktorisering av polynom från Matte 3c-kursen.


Exempel 1

Faktorisera följande polynom fullständigt:\( \qquad\qquad P(x) = x^4 - 29\;x^2 + 100 \)

I övning 6 hade vi löst 4:e gradsekvationen \( \qquad\qquad\quad\;\; x^4 - 29\,x^2 + 100 \, = \, 0 \)

och fått lösningarna \( \qquad\qquad\qquad\qquad x_1 = 5, \qquad x_2 = -5, \qquad x_3 = 2 \quad {\rm och} \quad x_4 = -2 \)

Pga kännedomen om ekvationens lösningar som är identiska med polynomets nollställen (= rötter), kan vi enligt algebrans fundamentalsats faktorisera 4:e gradspolynomet \( P(x)\, \) så här:

\( \qquad\qquad\qquad\qquad P(x) = x^4 - 29\;x^2 + 100 = (x-5) \cdot (x+5) \cdot (x-2) \cdot (x+2) \)


Exempel 2

Faktorisera polynomet \( P(x)\, \) fullständigt när följande delfaktorisering redan existerar:

\[ P(x) = x^5 - 5\,x^4 + 17\,x^3 - 13\,x^2 = x\cdot x\cdot (x-1)\cdot (x^2 - 4\,x + 13) \]

Delfaktoriseringen visar en dubbelrot \( x = 0\, \) och en enkel rot \( x = 1\, \). Man kan få fram den med de metoder vi lärt oss i detta avsnitt: Den dubbla roten \( x = 0\, \) får man genom att bryta ut \( x^2 \). Den enkla roten \( x = 1\, \) kan man få via grafen samt en prövning. Den sista faktorn kan beräknas med hjälp av jämförelse av koefficienter. Denna delfaktorisering stannar inom ramen av de reella talen.

Enligt algebrans fundamentalsats måste 5:e gradspolynomet \( P(x)\, \) ha två rötter till som ger upphov till den kvadratiska faktorn \( x^2 - 4\,x + 13 \) som står sist.

Vill man gå vidare och få fram den fullständiga faktoriseringen i linjära faktorer måste även den kvadratiska faktorn faktoriseras. Detta innebär att vi måste beräkna dess rötter som visar sig vara komplexa:

\[\begin{array}{rcl} x^2 - 4\,x + 13 & = & 0 \\ x_{1,2} & = & 2 \pm \sqrt{4 - 13} \\ x_{1,2} & = & 2 \pm \sqrt{-9} \\ x_{1,2} & = & 2 \pm \sqrt{9 \cdot (-1)} \\ x_{1,2} & = & 2 \pm \sqrt{9}\cdot \sqrt{-1} \\ x_1 & = & 2 + 3\,i \\ x_2 & = & 2 - 3\,i \\ \end{array}\]

Vi får alltså följande faktorisering av den kvadratiska faktorn:

\[ x^2 - 4\,x + 13 = (x - (2+3\,i)) \cdot (x - (2-3\,i)) = (x - 2-3\,i) \cdot (x - 2+3\,i)\]

Därmed blir den fullständiga faktoriseringen av polynomet \( P(x)\, \) i linjära faktorer\[ P(x) = x^5 - 5\,x^4 + 17\,x^3 - 13\,x^2 = x\cdot x\cdot (x-1)\cdot (x - 2-3\,i) \cdot (x - 2+3\,i) \]

Dvs \( P(x)\, \) har förutom dubbelroten \( x = 0\, \) och den enkla roten \( x = 1\, \) även de två komplexa rötterna \( x = 2 + 3\,i \) och \( x = 2 - 3\,i \). Sammanlagt har 5:e gradspolynomet \( P(x)\, \) exakt 5 rötter, om man räknar rötterna med multiplicitet, dvs den dubbla rötter dubbelt och beräknar även de komplexa rötterna - i enlighet med algebrans fundamentalsats.


Övningar 4103-4110.

Övningar 4111-4113 & Historik 1-3.







Copyright © 2022 TechPages AB. All Rights Reserved.