Skillnad mellan versioner av "4.3 Konjugatet"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
− | + | __TOC__ | |
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | |
Versionen från 14 januari 2025 kl. 11.32
<< Förra avsnitt | Genomgång | Övningar | Facit | Nästa avsnitt >> |
Konjugatets definition
Konjugatets egenskaper
Vieta: Samband mellan ett polynoms koefficienter och dess nollställen
Den franske matematikern François Viète var en av de första som på \(1500\)-talet såg sambandet mellan ett polynoms koefficienter och dess nollställen. Därför kallas formlerna efter honom.
Uppgift:
Ställ upp en andragradsekvation vars lösningar är \( \, x_1 = 2 \, \) och \( \, x_2 = 3 \).
Lösning:
För lösningarna \( x_1\,\) och \( \, x_2\,\) av andragradsekvationen \( \, x^2 + p\,x + q = 0 \, \) gäller
Vietas formler:
Därmed blir andragradsekvationen:
|
\( \qquad \) | Kontroll och jämförelse med p-q-formeln:
|
pq-formeln:
- Andragradsekvationen \( \, x^2 + p\,x + q = 0 \, \) kan lösas med pq-formeln:
\( \qquad\qquad\qquad\qquad\qquad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\)
Vietas formler
Om 2:gradsekvationen \( \; x^2 + p\,x + q \; = \; 0 \; \) har lösnin-
garna \( x_1\, \) och \( x_2\, \) så gäller: \( \qquad \boxed{\begin{align} x_1 + x_2 & = -p \\ x_1 \cdot x_2 & = q \end{align}} \)
Lösning av andragradsekvationer med Vieta \( - \) utan pq-formeln
Er stor fördel av Vietas formler för oss är att man kan lösa 2:a gradsekvationer och därmed faktorisera polynom utan att behöva använda p-q-formeln. Detta innebär mindre räknearbete vilket i sin tur minskar risken för felräkning. På köpet går det fortare att ta fram faktorisering av polynom.
Exempel 1:
Lös ekvationen \( \quad x^2 - 7\,x + 10 \; = \; 0 \)
Lösning:
För lösningarna \( x_1\,\) och \( x_2\,\) måste enligt Vietas formler gälla:
- \[ \begin{align} x_1 + x_2 & = -(-7) = 7 \\ x_1 \cdot x_2 & = 10 \end{align}\]
Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7.
Med lite provande hittar man \( \, 2 \, \) och \( \, 5 \, \) eftersom \( \, 2 + 5 = 7\, \) och \( \, 2 \cdot 5 = 10 \).
Kontrollen bekräftar resultatet:
- \[ 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 \]
- \[ 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 \]
Har vi på det här enkla sättet hittat nollställena till polynomet \( x^2 - 7\,x + 10 \) kan vi faktorisera det:
- \[ x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) \]
Utveckling av produkten på höger sidan bekräftar faktoriseringen.
Exempel 2
Lös ekvationen \( \quad x^2 - 8\,x + 16 \; = \; 0 \)
Lösning:
Vietas formler ger:
- \[ \begin{align} x_1 + x_2 & = -(-8) = 8 \\ x_1 \cdot x_2 & = 16 \end{align}\]
Man hittar lösningarna \( x_1 = 4\,\) och \( x_2 = 4\,\) eftersom \( 4 + 4 = 8\,\) och \( 4 \cdot 4 = 16 \).
Därför kan polynomet \( x^2 - 8\,x + 16 \) faktoriseras så här:
- \[ x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 \]
Den dubbla förekomsten av faktorn \( (x-4)\,\) ger roten, dvs lösningen \( x = 4\,\), dess namn dubbelrot.
4.4 Att räkna med komplexa tal
Copyright © 2022 TechPages AB. All Rights Reserved.