3.2 Integralberäkningar
<< Förra avsnitt | Genomgång | Övningar | Facit | Nästa avsnitt >> |
I övningarna finns även exponentialfunktioner vars primitiva funktioner sökes. Reglerna för dem skiljer sig från integrationsregeln för en potens:
Integrationsregler för exponentialfunktioner:Om \( \; f(x) \, = \; e\,^{k\,x} \qquad {\rm där} \qquad\, k = {\rm const.} \) då är den primitiva funktionen \( \displaystyle \;\; F(x) \, = \, \boxed{{e\,^{k\,x}}\over{k} \, + \, C\;} \; \) Om \( \; f(x) \, = \; a\,^{k\,x} \qquad {\rm där} \qquad\, a, k = {\rm const.} \) då är den primitiva funktionen \( \displaystyle \;\; F(x) \, = \, \boxed{\frac{a\,^{k\,x}}{k\,\ln a} \, + \, C\;} \; \) |
\( \quad \) |
Exempel: Om \( \, f(x) \, = \, e\,^{4x} \; \) då är den primitiva funktionen:
Om \( \, f(x) \, = \, 2\,^{3x} \; \) då är den primitiva funktionen:
|
Beakta skillnaden mellan potensfunktioner (\( x \) i basen) och exponentialfunktioner (\( x \) i exponenten). Därav olika integrationsregler.
Copyright © 2021 TechPages AB. All Rights Reserved.