4.6 Komplexa tal som vektorer

Från Mathonline
Version från den 11 februari 2025 kl. 22.13 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök
        <<  Förra avsnitt          Genomgång          Övningar          Facit          Nästa avsnitt  >>      


Punkt som vektor

Det komplexa talplanet

4 6 Komplexa vektorer 1.jpg


Addition av komplexa tal som addition av vektorer

Summan av två vektorer är:

Diagonalvektorn i det parallellogram som spänns upp av vektorerna

4 6 Komplexa vektorer 2.jpg


Subtraktion av komplexa tal som subtraktion av vektorer

u = 3 + i      z = 1 + 4i

Differensen   u - z    bildas som    summan   u + (-z)

4 6 Komplexa vektorer 3a.jpg


Cirkelns ekvation i det komplexa talplanet

Cirkel   =   Mängden av alla punkter \( \, z \, \) som har samma avstånd från medelpunkten \( \, z_0 \)

Avståndet mellan \( \, z \, \) och \( \, z_0 \; \) är \( \; | \, z - z_0 \, | \; \implies \; \)Cirkelns ekvation: \( \; | \, z - z_0 \, | \; = \; r\)

Två exempel:

4 6 Komplexa vektorer 4.jpg







Copyright © 2022 TechPages AB. All Rights Reserved.