Skillnad mellan versioner av "4.17 Polynomekvationer av högre grad"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
Rad 11: Rad 11:
  
  
= <b><span style="color:#931136">Algebrans fundamentalsats</span></b> =
+
== <b><span style="color:#931136">Algebrans fundamentalsats</span></b> ==
  
  
Rad 26: Rad 26:
 
</big>
 
</big>
  
== Anmärkningar: ==
+
=== Anmärkningar: ===
  
 
<big>
 
<big>
Rad 40: Rad 40:
  
  
= <b><span style="color:#931136">Exempel 1</span></b> =
+
== <b><span style="color:#931136">Exempel 1</span></b> ==
 
<!-- <div class="exempel12"> -->
 
<!-- <div class="exempel12"> -->
 
<div class="ovnE">
 
<div class="ovnE">
Rad 100: Rad 100:
  
  
= <b><span style="color:#931136">Exempel 2</span></b> =
+
== <b><span style="color:#931136">Exempel 2</span></b> ==
 
<!-- <div class="exempel12"> -->
 
<!-- <div class="exempel12"> -->
 
<div class="ovnC">
 
<div class="ovnC">
Rad 134: Rad 134:
  
  
= <b><span style="color:#931136">Exempel 3</span></b> =
+
== <b><span style="color:#931136">Exempel 3</span></b> ==
 
<div class="ovnA">
 
<div class="ovnA">
 
<table>
 
<table>

Nuvarande version från 10 april 2025 kl. 07.12

        <<  Förra avsnitt          Genomgång          Övningar          Facit          Nästa avsnitt  >>      


Algebrans fundamentalsats

Ett polynom av grad \( n\, \) har exakt \( n\, \) komplexa nollställen \( \; x_1, \, x_2, \,\ldots\, , x_n \; \) och kan faktoriseras så här:

\( a_n \, x^n \,+\, a_{n-1} \, x^{n-1} + \quad \ldots \quad + a_1 \, x \,+\, a_0 \quad = \quad {\color{Red} {a_n \cdot\, (x-x_1) \,\cdot\, (x-x_2) \,\cdot\quad\ldots\quad \cdot\, (x-x_n)}} \)


Se bevis, historia & annat gott.

Anmärkningar:

  •   Fundamentalsatsens egentliga utsaga är: Ett polynom av grad \( n\, \) har exakt \( n\, \) komplexa nollställen. Den ska tolkas så här:
  •   Antalet \( n\, \) borde räknas med multiplicitet, dvs dubbla rötter är räknade två gånger, tredubbla tre gånger osv.
  •   Den fullständiga faktoriseringen i linjära faktorer \( (x-x_i)\, \) där \( x_i\, \) = polynomets nollställen, är endast möjlig i mängden av komplexa tal.
  •   Räknar man endast med reella tal kommer vissa polynom att faktoriseras till linjära och kvadratiska faktorer, där de kvadratiska faktorerna har komplexa rötter.


Exempel 1

Faktorisera följande polynom fullständigt: \( \qquad P(x) = x^4 - 29\;x^2 + 100 \).

För att faktorisera \( \; P(x) \; \) måste vi hitta dess rötter dvs lösa polynomekvationen:

\[x^4 - 29\;x^2 + 100 = 0 \]

Vi inför en ny variabel z som vi definierar som:

\[ \displaystyle z = x^2 \]

Om vi i 4:e gradsekvationen ovan ersätter \( x^2 \) med \( z \) får vi en 2:a gradsekvation som vi löser med pq-formeln:

\[\begin{align} z^2 - 29\,z + 100 & = 0 \\ z_{1,2} & = 14,5 \pm \sqrt{14,5^2 - 100} \\ z_{1,2} & = 14,5 \pm \sqrt{210,25 - 100} \\ z_{1,2} & = 14,5 \pm \sqrt{110,25} \\ z_{1,2} & = 14,5 \pm 10,5 \\ z_1 & = 25 \\ z_2 & = 4 \\ \end{align}\]

Först sätter vi in lösningen \( z_1 = 25 \) i substitutionen \( z = x^2 \):

\[ \displaystyle z = x^2 = 25 \]

Roten ur båda leden av \( x^2 = 25 \) ger lösningarna:

\[ x_{1,2} = \pm 5 \]

Sedan görs samma sak med lösningen \( z_2 = 4 \). Insatt i substitutionen \( z = x^2 \) ger den:

\[ \displaystyle z = x^2 = 4 \]

Roten ur båda leden av \( x^2 = 4 \) ger lösningarna:

\[ x_{3,4} = \pm 2 \]

Slutligen kan vi konstatera att vår 4:e gradsekvation

\[ x^4 - 29\;x^2 = -100 \]

har de fyra lösningarna:

\[\begin{align} x_1 & = 5 \\ x_2 & = - 5 \\ x_3 & = 2 \\ x_4 & = - 2 \\ \end{align}\]

Ekvationens lösningar är identiska med polynomets nollställen.

Enligt algebrans fundamentalsats kan vi faktorisera 4:e gradspolynomet \( P(x)\, \) så här\[ P(x) = x^4 - 29\;x^2 + 100 = (x-5) \cdot (x+5) \cdot (x-2) \cdot (x+2) \]


Exempel 2

Faktorisera polynomet \( P(x)\, \) fullständigt när följande delfaktorisering redan existerar:

\[ P(x) = x^5 - 5\,x^4 + 17\,x^3 - 13\,x^2 = x\cdot x\cdot (x-1)\cdot (x^2 - 4\,x + 13) \]

Delfaktoriseringen visar en dubbelrot \( x = 0\, \) och en enkel rot \( x = 1\, \). Man kan få fram den med de metoder vi lärt oss i detta avsnitt: Den dubbla roten \( x = 0\, \) får man genom att bryta ut \( x^2 \). Den enkla roten \( x = 1\, \) kan man få via grafen samt en prövning. Den sista faktorn kan beräknas med hjälp av jämförelse av koefficienter. Denna delfaktorisering stannar inom ramen av de reella talen.

Enligt algebrans fundamentalsats måste 5:e gradspolynomet \( P(x)\, \) ha två rötter till som ger upphov till den kvadratiska faktorn \( x^2 - 4\,x + 13 \) som står sist.

Vill man gå vidare och få fram den fullständiga faktoriseringen i linjära faktorer måste även den kvadratiska faktorn faktoriseras. Detta innebär att vi måste beräkna dess rötter som visar sig vara komplexa:

\[\begin{array}{rcl} x^2 - 4\,x + 13 & = & 0 \\ x_{1,2} & = & 2 \pm \sqrt{4 - 13} \\ x_{1,2} & = & 2 \pm \sqrt{-9} \\ x_{1,2} & = & 2 \pm \sqrt{9 \cdot (-1)} \\ x_{1,2} & = & 2 \pm \sqrt{9}\cdot \sqrt{-1} \\ x_1 & = & 2 + 3\,i \\ x_2 & = & 2 - 3\,i \\ \end{array}\]

Vi får alltså följande faktorisering av den kvadratiska faktorn:

\[ x^2 - 4\,x + 13 = (x - (2+3\,i)) \cdot (x - (2-3\,i)) = (x - 2-3\,i) \cdot (x - 2+3\,i)\]

Därmed blir den fullständiga faktoriseringen av polynomet \( P(x)\, \) i linjära faktorer\[ P(x) = x^5 - 5\,x^4 + 17\,x^3 - 13\,x^2 = x\cdot x\cdot (x-1)\cdot (x - 2-3\,i) \cdot (x - 2+3\,i) \]

Dvs \( P(x)\, \) har förutom dubbelroten \( x = 0\, \) och den enkla roten \( x = 1\, \) även de två komplexa rötterna \( x = 2 + 3\,i \) och \( x = 2 - 3\,i \). Sammanlagt har 5:e gradspolynomet \( P(x)\, \) exakt 5 rötter, om man räknar rötterna med multiplicitet, dvs den dubbla rotter dubbelt och beräknar även de komplexa rötterna - i enlighet med algebrans fundamentalsats.


Exempel 3

Faktorisera polynomet \( \qquad P(x) \; = \; x^3 - 6\,x^2 + 5\,x + 12 \)


Lösning: För att få fram ett av polynomets nollställen ritar vi grafen:

Grafen visar att polynomet har tre nollställen av vilka ett kan avläsas

till \( \, x_1 = -1 \). För att avgöra om detta nollställe är exakt gör vi en kon-

troll genom att sätta in \( \, x_1 = -1 \, \) i polynomet:

\( \quad \) 3e gradspolynom.jpg

\( P(-1) = (-1)^3 - 6\,\cdot\,(-1)^2 + 5\,\cdot\,(-1) + 12 = -1 - 6\,\cdot\,1 - 5 + 12 = -12 +12 = 0 \)

Kontrollen visar att \( x_1 = -1\, \) är ett exakt nollställe till \( P(x) \). Slutsats: Faktorn \( \, (x + 1) \, \) kan brytas ut:

\[ P(x) \; = \; x^3 - 6\,x^2 + 5\,x + 12 \; = \; Q(x) \cdot (x+1) \; = \; 0 \]

där \( \, Q(x) \, \) är ett 2:a gradspolynom som vi inte känner till än, se algebrans fundamentalsats.

\( P(x)\, \):s två andra nollställen måste vara det 2:a gradspolynomet \( \, Q(x)\, \):s nollställen.

Vi bestämmer \( \, Q(x)\, \) genom att sätta den till den allmänna formen för 2:a gradspolynom:

\[ Q(x) = a\,x^2 + b\,x + c \]

där \( \, a, b, c \, \) är koefficienter som vi måste bestämma. Sätter vi in denna form i ansasten ovan får vi:

\[ x^3 - 6\,x^2 + 5\,x + 12 = (a\,x^2 + b\,x + c) \cdot (x+1) \]

Vi bestämmer \( \, a, b, c \, \) genom lösa upp parentesen och jämföra koefficienterna:

\[ x^3 - 6\,x^2 + 5\,x + 12 = a\,x^3 + b\,x^2 + c\,x + a\,x^2 + b\,x + c = a\,x^3 + (b+a)\,x^2 + (c+b)\,x + c \]

Jämförelse av koefficienterna på höger- och vänsterled ger:

\[ \begin{align} a & = 1 \\ b + a & = -6 \\ c + b & = 5 \\ c & = 12 \end{align}\]

Genom insättning av \( \, a = 1 \, \) i den andra och \( \, c = 12 \, \) i den tredje ekvationen får vi i båda fall \( \, b = -7 \, \).

Därmed har vi bestämt polynomet \( \, Q(x) \, \): \( \qquad Q(x) = x^2 - 7\,x + 12 \)

Uppgiften: Faktorisera polynomet \( \, Q(x) \, = \, x^2 - 7\,x + 12 \).

Lösningen: Vi beräknar polynomets nollställen:

\[ x^2 - 7\,x + 12 = 0 \]

För att snabbt lösa denna 2:a gradsekvation som ett led i faktoriseringsprocessen

använder vi Vietas formler:

\[ \begin{align} x_1 + x_2 & = -p = -(-7) = 7 \\ x_1 \cdot x_2 & = \;\;\; q = 12 \end{align}\]

Dvs vi behöver hitta två tal vars produkt är \( \, 12 \, \) och vars summa är \( \, 7 \, \).

Med lite provande kommer man fram till:

\[\begin{align} x_1 & = 3 \\ x_2 & = 4 \end{align}\]

eftersom \( \, 3 + 4 = 7 \, \) och \( \, 3 \cdot 4 = 12 \). Därmed är polynomet \( \, Q(x) \):s faktorisering</b>:

\[ Q(x) \, = \, x^2 - 7\,x + 12 \; = \; \underline{(x - 3) \, \cdot \, (x - 4)} \]

där \( \, x_2 = 3 \, \) och \( \, x_3 = 4 \, \) är \( \, Q(x)\, \):s nollställen.

Inför vi nu detta resultat i vår ansats i början får vi den fullständiga faktoriseringen för \( \, P(x) \):

\( P(x) = x^3 - 6\,x^2 + 5\,x + 12 = Q(x) \cdot (x+1) = (x^2 - 7\,x + 12) \cdot (x+1) = \underline{(x-3)\,\cdot\,(x-4)\,\cdot\,(x+1)} \)

Den ovan beskrivna metoden kan i princip även användas för faktorisering av polynom av högre grad än 3.

Till grund för alla dessa faktoriseringar ligger algebrans fundamentalsats som behandlades ovan.


Övningar 4444-4457







Copyright © 2022 TechPages AB. All Rights Reserved.